概述

不管是原生Android、iOS还是JavaScript,只要是涉及手势交互都会有事件的分发处理。和原生Android、iOS的事件分发的步骤和原理一样,Flutter的事件分发总体也由手势触发、拦截和响应等几个部分构成。Flutter所有事件源头是 hooks.dart文件的_dispatchPointerDataPacket函数,通过拦截屏幕的点击、滑动等各种事件,进而分发给原生代码进行响应(ps:Android事件分发)。

如果你看过了解原生Android、iOS的事件分发机制,那么Flutter的事件分发,其实是在Android和iOS上加了壳,即Flutter的事件分发是在原生Android、iOS的的事件分发上进行包装的(Android - C - Dart,iOS- C -Dart)。其中,C是Flutter的底层engine,负责Flutter上层和原生Android、iOS系统的交互。

事件分发到Dart的入口类是GestureBinding类,此类位于gestures/binding.dart文件中,与手势识别相关的都位于gestures包中,如下图所示。

  • converter.dart将物理坐标_dispatchPointerDataPacket收到的物理数据PointerDataPacket转换成PointerEvent, 类似于安卓在ViewRootImpl.java将InputEventReceiver收到的InputEvent转换为MotionEvent。
  • recognizer.dart的GestureRecognizer是所有手势识别的基类。
  • rendering/binding.dart的RendererBinding类关联了render树和Flutter引擎,等价于安卓的Surface。
  • view.dart的RenderView是render树的根节点,等价于安卓的DecorView。

Flutter的事件分发基类是GestureBinding,打开GestureBinding类,它的成员函数包括dispatchEvent、handleEvent和hitTes等,主要是从事件队列里按照先入先出方式处理PointerEvent,源码如下。

mixin GestureBinding on BindingBase implements HitTestable, HitTestDispatcher, HitTestTarget {  @override  void initInstances() {    super.initInstances();    _instance = this;    ui.window.onPointerDataPacket = _handlePointerDataPacket;  }

其中,WidgetsFlutterBinding.ensureInitialized()函数的作用就是初始化各个binging。

Flutter 事件分发

和Android、iOS类似,Flutter的事件分发的入口在runApp函数,相关的代码如下。

void runApp(Widget app) {  WidgetsFlutterBinding.ensureInitialized()    ..attachRootWidget(app)    ..scheduleWarmUpFrame();}class WidgetsFlutterBinding extends BindingBase with GestureBinding, ServicesBinding, SchedulerBinding, PaintingBinding, SemanticsBinding, RendererBinding, WidgetsBinding {  static WidgetsBinding ensureInitialized() {    if (WidgetsBinding.instance == null)      WidgetsFlutterBinding();    return WidgetsBinding.instance;  }} void attachRootWidget(Widget rootWidget) {  _renderViewElement = RenderObjectToWidgetAdapter(    container: renderView,    debugShortDescription: '[root]',    child: rootWidget  ).attachToRenderTree(buildOwner, renderViewElement);}

WidgetsFlutterBinding.ensureInitialized()函数的作用是初始化各个binging。事实上,Flutter 中的 WidgetsFlutterBinding的 Binding可以分为GestureBinding、ServicesBinding、SchedulerBinding、PaintingBinding、SemanticsBinding、RendererBinding、WidgetsBinding 等 7 种 Binding,它们都有自己在功能上的划分。其中,GestureBinding就是处理事件分发的,attachRootWidget就是设置根节点, 可以看到真正的根节点是renderview, 也是Flutter事件分发的起点。

下面我们来重点看一下GestureBinding类。

GestureBinding

和Android事件处理的流程一样,首先,系统会拦截用户的事件,然后在使用GestureBinding的_handlePointerEvent进行事件命中处理。原生事件到达Dart层之后调用的第一个方法是_handlePointerDataPacket,它的源码如下。

 void _handlePointerDataPacket(ui.PointerDataPacket packet) {    _pendingPointerEvents.addAll(PointerEventConverter.expand(packet.data, window.devicePixelRatio));     if (!locked)      _flushPointerEventQueue();  }

_handlePointerDataPacket方法有一个PointerEventConverter类,作用是将原生传来的手势数据全部转化为Dart对应的对象保存数据,然后保存到集合中进行储存。接下来来我们看一下_flushPointerEventQueue方法,源码如下。

void _flushPointerEventQueue() {    assert(!locked);    while (_pendingPointerEvents.isNotEmpty)      _handlePointerEvent(_pendingPointerEvents.removeFirst());  }

_flushPointerEventQueue方法的作用就是循环处理每个手指的的事件,并进行处理,源码如下。

void _handlePointerEvent(PointerEvent event) {    assert(!locked);    HitTestResult hitTestResult;    //如果是手指按下的话    if (event is PointerDownEvent || event is PointerSignalEvent) {      assert(!_hitTests.containsKey(event.pointer));      hitTestResult = HitTestResult();      //得到碰撞的控件组      hitTest(hitTestResult, event.position);      if (event is PointerDownEvent) {        _hitTests[event.pointer] = hitTestResult;      }      assert(() {        if (debugPrintHitTestResults)          debugPrint('$event: $hitTestResult');        return true;      }());    }    //手指抬起    else if (event is PointerUpEvent || event is PointerCancelEvent) {      hitTestResult = _hitTests.remove(event.pointer);    }    //缓存点击的事件,接下来发生滑动的时候直接复用原来的碰撞控件组    else if (event.down) {      // Because events that occur with the pointer down (like      // PointerMoveEvents) should be dispatched to the same place that their      // initial PointerDownEvent was, we want to re-use the path we found when      // the pointer went down, rather than do hit detection each time we get      // such an event.      hitTestResult = _hitTests[event.pointer];    }    assert(() {      if (debugPrintMouseHoverEvents && event is PointerHoverEvent)        debugPrint('$event');      return true;    }());    if (hitTestResult != null ||        event is PointerHoverEvent ||        event is PointerAddedEvent ||        event is PointerRemovedEvent) {      dispatchEvent(event, hitTestResult);    }  }

这个方法的主要目的就是得到HitTestResult,就是根据按下的坐标位置找出view树中哪些控件在点击的范围内,手指在移动和抬起的时候都复用当前的事件,区别在于不同的手指有不同的索引值。接下来,看一下用户的触摸行为,hitTest首先会进入RendererBinding处理,打开RendererBinding类的hitTest方法,如下所示。

RenderView get renderView => _pipelineOwner.rootNode as RenderView;void hitTest(HitTestResult result, Offset position) {    assert(renderView != null);    renderView.hitTest(result, position: position);    super.hitTest(result, position);  }

其中,RenderView可以理解为Flutter 视图树的根View,在Flutter中也叫做Widget ,一个Widget 对应一个Element 。在Flutter中,渲染会三棵树,即Widget 树、Element 树和RenderObject 树。我们进行页面布局分析时,就可以看到它们,如下所示。

关于Widget 树、Element 树和RenderObject 树,可以查看Flutter渲染之Widget、Element 和 RenderObject的介绍。

然后,我们打开renderView.hitTest方法,对应的代码如下所示。

 bool hitTest(HitTestResult result, { Offset position }) {    if (child != null)      child.hitTest(BoxHitTestResult.wrap(result), position: position);    result.add(HitTestEntry(this));    return true;  }

可以看到,根视图是先从子view开始放进集合,放完子view再放自己,这和前端JS点击事件冒泡的原理是一样的。并且,只有满足条件子视图才会放到 入RenderBox 的这个方法中。

 bool hitTest(BoxHitTestResult result, { @required Offset position }) {    //所点击的范围是否在当前控件的范围内    if (_size.contains(position)) {    //先添加孩子中的事件后选人      if (hitTestChildren(result, position: position) || hitTestSelf(position)) {        result.add(BoxHitTestEntry(this, position));        return true;      }    }    return false;  }

接下来,看一下Stack小部件hitTestChildren的实现,源码如下。

  @override  bool hitTestChildren(BoxHitTestResult result, { Offset position }) {    return defaultHitTestChildren(result, position: position);  }bool defaultHitTestChildren(BoxHitTestResult result, { Offset position }) {    // the x, y parameters have the top left of the node's box as the origin    ChildType child = lastChild;    while (child != null) {      final ParentDataType childParentData = child.parentData;      final bool isHit = result.addWithPaintOffset(        offset: childParentData.offset,        position: position,        hitTest: (BoxHitTestResult result, Offset transformed) {          assert(transformed == position - childParentData.offset);          return child.hitTest(result, position: transformed);        },      );      if (isHit)        return true;      child = childParentData.previousSibling;    }    return false;  }

这个方法的作用就是判断包含Padding的视图是否在点击范围内,如果命中,则阻止其他事件继续冒泡。看到此处,我们大体可以看出,Flutter的事件处理主要是判断点击的坐标知否在控件范围内,如果在范围内直接响应,如果不在继续向上冒泡,并且事件是从叶子开始的,也即Web中的事件冒泡。

完成命中处理后,接下来回到事件处理的主流程,即事件派发dispatchEvent,代码位于gestrues/binding里面,源码如下。

 void dispatchEvent(PointerEvent event, HitTestResult hitTestResult) {    assert(!locked);    // No hit test information implies that this is a hover or pointer    // add/remove event.这种情况出在指针悬停屏幕上方,微微接触或不接触,是手机敏感而言    if (hitTestResult == null) {      assert(event is PointerHoverEvent || event is PointerAddedEvent || event is PointerRemovedEvent);      try {        pointerRouter.route(event);      } catch (exception, stack) {        FlutterError.reportError(FlutterErrorDetailsForPointerEventDispatcher(          exception: exception,          stack: stack,          library: 'gesture library',          context: ErrorDescription('while dispatching a non-hit-tested pointer event'),          event: event,          hitTestEntry: null,          informationCollector: () sync* {            yield DiagnosticsProperty('Event', event, style: DiagnosticsTreeStyle.errorProperty);          },        ));      }      return;    }     for (HitTestEntry entry in hitTestResult.path) {      try {        entry.target.handleEvent(event.transformed(entry.transform), entry);      } catch (exception, stack) {        FlutterError.reportError(FlutterErrorDetailsForPointerEventDispatcher(          exception: exception,          stack: stack,          library: 'gesture library',          context: ErrorDescription('while dispatching a pointer event'),          event: event,          hitTestEntry: entry,          informationCollector: () sync* {            yield DiagnosticsProperty('Event', event, style: DiagnosticsTreeStyle.errorProperty);            yield DiagnosticsProperty('Target', entry.target, style: DiagnosticsTreeStyle.errorProperty);          },        ));      }    }  }

此方法最根本的作用是循环事件分发,并以冒泡的形式从底部到分发事件,当事件被命中时,即由当前子节点处理事件,这和Android的事件分发的逻辑是一样的。下面以GestureDetector和Listener来举例事件分发的不同。如果用Listener的话,Listener的组件最终对应的RenderObject是RenderPointerListener,它的监测当前点击是否命中的方法如下。

bool hitTest(BoxHitTestResult result, { Offset position }) {    bool hitTarget = false;    if (size.contains(position)) {      hitTarget = hitTestChildren(result, position: position) || hitTestSelf(position);      if (hitTarget || behavior == HitTestBehavior.translucent)        result.add(BoxHitTestEntry(this, position));    }    return hitTarget;  }   @override  bool hitTestSelf(Offset position) => behavior == HitTestBehavior.opaque;

使用Listener嵌套的子组件默认情况下是命中的,很多子部件例如TextImage等,它们的hitTestSelf返回True,假如我们为Text嵌套了Listener,那么事件分发的时候设计的代码如下所示。

void handleEvent(PointerEvent event, HitTestEntry entry) {    assert(debugHandleEvent(event, entry));    if (onPointerDown != null && event is PointerDownEvent)      return onPointerDown(event);    if (onPointerMove != null && event is PointerMoveEvent)      return onPointerMove(event);    if (onPointerUp != null && event is PointerUpEvent)      return onPointerUp(event);    if (onPointerCancel != null && event is PointerCancelEvent)      return onPointerCancel(event);    if (onPointerSignal != null && event is PointerSignalEvent)      return onPointerSignal(event);  }

如果使用的是GestureDetector的话,build方法会为我们添加很多处理手势的方法类,如TapGestureRecognizer,通过处理手势识别后,最终返回的是RawGestureDetector,涉及的代码如下。

 final Map gestures = {};     if (      onTapDown != null ||      onTapUp != null ||      onTap != null ||      onTapCancel != null ||      onSecondaryTapDown != null ||      onSecondaryTapUp != null ||      onSecondaryTapCancel != null    ) {      gestures[TapGestureRecognizer] = GestureRecognizerFactoryWithHandlers(        () => TapGestureRecognizer(debugOwner: this),        (TapGestureRecognizer instance) {          instance            ..onTapDown = onTapDown            ..onTapUp = onTapUp            ..onTap = onTap            ..onTapCancel = onTapCancel            ..onSecondaryTapDown = onSecondaryTapDown            ..onSecondaryTapUp = onSecondaryTapUp            ..onSecondaryTapCancel = onSecondaryTapCancel;        },      );    }     if (onDoubleTap != null) {      gestures[DoubleTapGestureRecognizer] = GestureRecognizerFactoryWithHandlers(        () => DoubleTapGestureRecognizer(debugOwner: this),        (DoubleTapGestureRecognizer instance) {          instance            ..onDoubleTap = onDoubleTap;        },      );    }     if (onLongPress != null ||        onLongPressUp != null ||        onLongPressStart != null ||        onLongPressMoveUpdate != null ||        onLongPressEnd != null) {      gestures[LongPressGestureRecognizer] = GestureRecognizerFactoryWithHandlers(        () => LongPressGestureRecognizer(debugOwner: this),        (LongPressGestureRecognizer instance) {          instance            ..onLongPress = onLongPress            ..onLongPressStart = onLongPressStart            ..onLongPressMoveUpdate = onLongPressMoveUpdate            ..onLongPressEnd =onLongPressEnd            ..onLongPressUp = onLongPressUp;        },      );    }     if (onVerticalDragDown != null ||        onVerticalDragStart != null ||        onVerticalDragUpdate != null ||        onVerticalDragEnd != null ||        onVerticalDragCancel != null) {      gestures[VerticalDragGestureRecognizer] = GestureRecognizerFactoryWithHandlers(        () => VerticalDragGestureRecognizer(debugOwner: this),        (VerticalDragGestureRecognizer instance) {          instance            ..onDown = onVerticalDragDown            ..onStart = onVerticalDragStart            ..onUpdate = onVerticalDragUpdate            ..onEnd = onVerticalDragEnd            ..onCancel = onVerticalDragCancel            ..dragStartBehavior = dragStartBehavior;        },      );    }     if (onHorizontalDragDown != null ||        onHorizontalDragStart != null ||        onHorizontalDragUpdate != null ||        onHorizontalDragEnd != null ||        onHorizontalDragCancel != null) {      gestures[HorizontalDragGestureRecognizer] = GestureRecognizerFactoryWithHandlers(        () => HorizontalDragGestureRecognizer(debugOwner: this),        (HorizontalDragGestureRecognizer instance) {          instance            ..onDown = onHorizontalDragDown            ..onStart = onHorizontalDragStart            ..onUpdate = onHorizontalDragUpdate            ..onEnd = onHorizontalDragEnd            ..onCancel = onHorizontalDragCancel            ..dragStartBehavior = dragStartBehavior;        },      );    }     if (onPanDown != null ||        onPanStart != null ||        onPanUpdate != null ||        onPanEnd != null ||        onPanCancel != null) {      gestures[PanGestureRecognizer] = GestureRecognizerFactoryWithHandlers(        () => PanGestureRecognizer(debugOwner: this),        (PanGestureRecognizer instance) {          instance            ..onDown = onPanDown            ..onStart = onPanStart            ..onUpdate = onPanUpdate            ..onEnd = onPanEnd            ..onCancel = onPanCancel            ..dragStartBehavior = dragStartBehavior;        },      );    }     if (onScaleStart != null || onScaleUpdate != null || onScaleEnd != null) {      gestures[ScaleGestureRecognizer] = GestureRecognizerFactoryWithHandlers(        () => ScaleGestureRecognizer(debugOwner: this),        (ScaleGestureRecognizer instance) {          instance            ..onStart = onScaleStart            ..onUpdate = onScaleUpdate            ..onEnd = onScaleEnd;        },      );    }     if (onForcePressStart != null ||        onForcePressPeak != null ||        onForcePressUpdate != null ||        onForcePressEnd != null) {      gestures[ForcePressGestureRecognizer] = GestureRecognizerFactoryWithHandlers(        () => ForcePressGestureRecognizer(debugOwner: this),        (ForcePressGestureRecognizer instance) {          instance            ..onStart = onForcePressStart            ..onPeak = onForcePressPeak            ..onUpdate = onForcePressUpdate            ..onEnd = onForcePressEnd;        },      );    }     return RawGestureDetector(      gestures: gestures,      behavior: behavior,      excludeFromSemantics: excludeFromSemantics,      child: child,    );

并且,RawGestureDetector默认使用的也是Listener,它注册了手指按下的方法,分发的时候Down事件是sdk默认处理的。

 void _handlePointerDown(PointerDownEvent event) {    assert(_recognizers != null);    for (GestureRecognizer recognizer in _recognizers.values)      recognizer.addPointer(event);  }

此方法会向Binding路由器中注册那些需要处理的事件,假如我们只声明了点击事件,那么集合中负责添加的GestureRecognizer的实现类就是TapGestureRecognizer,接下来我们看一下addPointer方法。

 void addPointer(PointerDownEvent event) {    _pointerToKind[event.pointer] = event.kind;    if (isPointerAllowed(event)) {      addAllowedPointer(event);    } else {      handleNonAllowedPointer(event);    }  }bool isPointerAllowed(PointerDownEvent event) {    switch (event.buttons) {      case kPrimaryButton:        if (onTapDown == null &&            onTap == null &&            onTapUp == null &&            onTapCancel == null)          return false;        break;      case kSecondaryButton:        if (onSecondaryTapDown == null &&            onSecondaryTapUp == null &&            onSecondaryTapCancel == null)          return false;        break;      default:        return false;    }    return super.isPointerAllowed(event);  }

isPointerAllowed方法的作用就是用来判定当前的手势,默认返回false,如果事件比命中,接下来执行addAllowedPointer方法,如下所示。

void addAllowedPointer(PointerDownEvent event) {    startTrackingPointer(event.pointer, event.transform);    if (state == GestureRecognizerState.ready) {      state = GestureRecognizerState.possible;      primaryPointer = event.pointer;      initialPosition = OffsetPair(local: event.localPosition, global: event.position);      if (deadline != null)        _timer = Timer(deadline, () => didExceedDeadlineWithEvent(event));    }    void startTrackingPointer(int pointer, [Matrix4 transform]) {    GestureBinding.instance.pointerRouter.addRoute(pointer, handleEvent, transform);    _trackedPointers.add(pointer);    assert(!_entries.containsValue(pointer));    _entries[pointer] = _addPointerToArena(pointer);  }

这两个方法的主要作用就是用来将当前的handleEvent方法添加到GestureBinding路由器里面去,而_addPointerToArena是就是添加处理事件的具体逻辑。接下来,我们来看一下GestureBinding里面的handleEvent函数的事件分发逻辑。

void handleEvent(PointerEvent event, HitTestEntry entry) {     pointerRouter.route(event);    if (event is PointerDownEvent) {       gestureArena.close(event.pointer);    } else if (event is PointerUpEvent) {       gestureArena.sweep(event.pointer);    } else if (event is PointerSignalEvent) {      pointerSignalResolver.resolve(event);    }  }}

如果手指按下的时候GestureRecognizer的handleEvent方法没有决策出到底哪个控件会成为事件的处理者,那么会执行 gestureArena.close()方法,如下所示。

void close(int pointer) {    final _GestureArena state = _arenas[pointer];    if (state == null)      return; // This arena either never existed or has been resolved.    state.isOpen = false;    assert(_debugLogDiagnostic(pointer, 'Closing', state));    _tryToResolveArena(pointer, state);  }

如果未决策出哪个控件处理事件的时候,state.isOpen此时被标记为false,也即是关闭手势的处理。

void _tryToResolveArena(int pointer, _GestureArena state) {    assert(_arenas[pointer] == state);    assert(!state.isOpen);    if (state.members.length == 1) {      scheduleMicrotask(() => _resolveByDefault(pointer, state));    } else if  (state.members.isEmpty) {      _arenas.remove(pointer);      assert(_debugLogDiagnostic(pointer, 'Arena empty.'));    } else if (state.eagerWinner != null) {      assert(_debugLogDiagnostic(pointer, 'Eager winner: ${state.eagerWinner}'));      _resolveInFavorOf(pointer, state, state.eagerWinner);    }  }

如果手势竞争中,有竞争胜出者,则由胜出者执行事件处理,如下所示。

void _resolveInFavorOf(int pointer, _GestureArena state, GestureArenaMember member) {    assert(state == _arenas[pointer]);    assert(state != null);    assert(state.eagerWinner == null || state.eagerWinner == member);    assert(!state.isOpen);    _arenas.remove(pointer);    //其他的命中全部拒绝    for (GestureArenaMember rejectedMember in state.members) {      if (rejectedMember != member)        rejectedMember.rejectGesture(pointer);    }    member.acceptGesture(pointer);  }

如果事件处理中没有具体的事件处理对象,将会默认采用最底层的的叶子节点控件作为事件处理者,也就是说最内层的那个控件将消耗事件。也就是说,如果使用GestureRecognizer来识别手势事件时,最终事件会被最内层的GestureRecognizer消耗,这和Android单个控件消耗事件差不多,所以嵌套滚动总是先滚动内层,先被内层消耗,然后再执行外层。

参考: Flutter 事件分发

更多相关文章

  1. Android消息传递之基于RxJava实现一个EventBus - RxBus
  2. Android(安卓)Service使用方法--简单音乐播放实例
  3. Android(安卓)Handler的使用(二)
  4. android中wifi使用方法介绍
  5. Linux/Android——Input系统之frameworks层InputManagerService
  6. [Android开发实战]Android手势密码(支付宝手势密码)实现(支持2.x)
  7. Android数据库操作的简单封装
  8. Android(安卓)学习之Drawable-shape使用方法
  9. 控制Android应用权限的五种方法

随机推荐

  1. Android(安卓)ListView几个比较特别的属
  2. Android(安卓)Studio使用Volley
  3. Android开发学习总结(一)——搭建最新版
  4. android xmlns:android的作用
  5. Android中应用多进程的整理总结
  6. Android和IOS系统对比
  7. Android术语
  8. TensorFlow及OpenCV在Android中的实际应
  9. Android视频播放之边缓存边播放
  10. Android的Camera架构简介